迈迅科技专注为企业办理高新技术企业认定、资金扶持项目、知识产权代理服务
17782523696
迈迅科技询高新技术企业认定办理

恭喜

行业动态

双因素方差分析法,什么是双因素方差分析

发布时间:2024-12-19 10:09:00 点击次数:0

双因素方差分析结果解读

双因素方差分析结果解读

单因素方差分析只是考虑了一个自变量(定类)与一个因变量(定量)之间的关系,但是在实际问题研究中可能研究两个或者几个因素与因变量之间的关系,例如,分析产品满意度与学历、品牌满意度等的关系。当方差分析中研究几个自变量和1个因变量之间的关系时,称为多因素方差分析。如果是两个自变量则为双因素方差分析。

有四个品牌的吸尘器在两个地区的不同门店销售,为分析吸尘器的品牌和销售地区对销售量的影响,搜集每个品牌在各地区的销售数据,销售经理根据搜集的数据想要进行分析品牌和地区对吸尘器的销售量是否有显著差异以及两个因素搭配是否对销售量产生新的影响,部分数据如下:

例子中涉及三个变量,一个是“地区”一个是“品牌”还有一个是“销售量”。其中“地区”和“品牌”是定类变量,“销售量”是定量变量,想要进行分析品牌和地区对吸尘器的销售量是否有显著差异,分析究竟是一个因素在起作用,还是两个因素都在起作用,还是两个因素都不起作用。这就是一个双因素方差分析问题。

假设数据已经满足双因素方差分析要求。

主效应

考虑某因素的主效应时,需要考虑除所有因素的效应,简单来说就是X对Y的影响。比如:双因素方差分析中,分别去判断“地区”和“品牌”对销售量的影响。

结果如下:

首先进行查看变量“地区”,发现自变量地区的F值为21.970,并且p值小于0.05所以说明主效应存在,然后对“品牌”进行分析,发现品牌的F值为130.145并且p值小于0.05所以说明主效应存在,具体差异可以进行事后多重比较进行分析。接下来研究“地区”和“品牌”搭配是否对销售量产生新的影响,进行查看交互效应。

交互效应

在双因素方差分析中,如果除了研究品牌和地区对销售量的影响还研究两个因素搭配是否对销售量产生新的影响,例如例子中的某个地区对某种品牌吸尘器有特殊偏好,则为双因素方差分析的交互作用分析,即交互效应。

从上表可以看出,分析项为“地区与品牌的交互项”因变量为“销售量”发现模型的F值为1.649,并且p值为0.218大于0.05,所以模型不显著,即说明没有交互效应。分析完毕。综上,存在主效应但不存在交互效应,接下来进一步分析。

如果进行双因素方差分析,一般是主效应显著后才会进一步查看事后多重比较,对于交互作用显著的模型才会更深一步研究简单效应分析。

简单效应

简单效应是指简单效应指X1在某个水平时,X2不同水平的比较;因为该模型只存在主效应所以进行事后多重比较不进行简单效应分析。如果存在交互效应,则可以进一步分析简单效应。

事后多重比较

因为主效应显著,并且“地区”和“品牌”两个主效应都显著,所以进行事后多重比较,进一步分析(此处利用LSD方法进行,因为该方法对差异最为敏感使用最为广泛,并且检验效能高,对比组别较少时使用,除此之外SPSSAU还提供其它方法,比如:Bonferroni校正等)。

“地区”事后多重比较:

比较不同地区的销量是否有显著性差异,上表可以看出t值为-4.687,p值远小于0.05所以地区1和地区2的销量有显著性差异并且地区1与地区2的均值差值为负数,说明地区2的均值更大,从侧面说明地区2的销量更好。

“品牌”事后多重比较:

比较不同品牌的销量是否有显著性差异,上表可以看出品牌1、品牌2、品牌3、品牌4两两之间比较,p值均远小于0.05所以不同品牌两两之间的销量均有显著性差异,并且从均值差值中可以看出品牌1的均值更大,从侧面说明品牌1的销量更好。

什么是双因素方差分析

双因素方差分析结果解读

单因素方差分析只是考虑了一个自变量(定类)与一个因变量(定量)之间的关系,但是在实际问题研究中可能研究两个或者几个因素与因变量之间的关系,例如,分析产品满意度与学历、品牌满意度等的关系。当方差分析中研究几个自变量和1个因变量之间的关系时,称为多因素方差分析。如果是两个自变量则为双因素方差分析。

有四个品牌的吸尘器在两个地区的不同门店销售,为分析吸尘器的品牌和销售地区对销售量的影响,搜集每个品牌在各地区的销售数据,销售经理根据搜集的数据想要进行分析品牌和地区对吸尘器的销售量是否有显著差异以及两个因素搭配是否对销售量产生新的影响,部分数据如下:

例子中涉及三个变量,一个是“地区”一个是“品牌”还有一个是“销售量”。其中“地区”和“品牌”是定类变量,“销售量”是定量变量,想要进行分析品牌和地区对吸尘器的销售量是否有显著差异,分析究竟是一个因素在起作用,还是两个因素都在起作用,还是两个因素都不起作用。这就是一个双因素方差分析问题。

假设数据已经满足双因素方差分析要求。

主效应

考虑某因素的主效应时,需要考虑除所有因素的效应,简单来说就是X对Y的影响。比如:双因素方差分析中,分别去判断“地区”和“品牌”对销售量的影响。

结果如下:

首先进行查看变量“地区”,发现自变量地区的F值为21.970,并且p值小于0.05所以说明主效应存在,然后对“品牌”进行分析,发现品牌的F值为130.145并且p值小于0.05所以说明主效应存在,具体差异可以进行事后多重比较进行分析。接下来研究“地区”和“品牌”搭配是否对销售量产生新的影响,进行查看交互效应。

交互效应

在双因素方差分析中,如果除了研究品牌和地区对销售量的影响还研究两个因素搭配是否对销售量产生新的影响,例如例子中的某个地区对某种品牌吸尘器有特殊偏好,则为双因素方差分析的交互作用分析,即交互效应。

从上表可以看出,分析项为“地区与品牌的交互项”因变量为“销售量”发现模型的F值为1.649,并且p值为0.218大于0.05,所以模型不显著,即说明没有交互效应。分析完毕。综上,存在主效应但不存在交互效应,接下来进一步分析。

如果进行双因素方差分析,一般是主效应显著后才会进一步查看事后多重比较,对于交互作用显著的模型才会更深一步研究简单效应分析。

简单效应

简单效应是指简单效应指X1在某个水平时,X2不同水平的比较;因为该模型只存在主效应所以进行事后多重比较不进行简单效应分析。如果存在交互效应,则可以进一步分析简单效应。

事后多重比较

因为主效应显著,并且“地区”和“品牌”两个主效应都显著,所以进行事后多重比较,进一步分析(此处利用LSD方法进行,因为该方法对差异最为敏感使用最为广泛,并且检验效能高,对比组别较少时使用,除此之外SPSSAU还提供其它方法,比如:Bonferroni校正等)。

“地区”事后多重比较:

比较不同地区的销量是否有显著性差异,上表可以看出t值为-4.687,p值远小于0.05所以地区1和地区2的销量有显著性差异并且地区1与地区2的均值差值为负数,说明地区2的均值更大,从侧面说明地区2的销量更好。

“品牌”事后多重比较:

比较不同品牌的销量是否有显著性差异,上表可以看出品牌1、品牌2、品牌3、品牌4两两之间比较,p值均远小于0.05所以不同品牌两两之间的销量均有显著性差异,并且从均值差值中可以看出品牌1的均值更大,从侧面说明品牌1的销量更好。

双因素方差分析步骤

双因素方差分析(Two-way ANOVA)有两种类型:一个是无交互作用的双因素方差分析,另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。

双因素方差分析(Double factor variance analysis)有两种类型:一个是无交互作用的双因素方差分析,它假定因素A和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。这里介绍无交互作用的双因素方差分析

双因素方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。

下面用一个简单的例子来说明双因素方差分析的基本思想:

如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下:

问该地克山病患者与健康人的血磷值是否不同?

患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11

健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87

从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源:

组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等;

组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。

而且:SS总=SS组间+SS组内 v总=v组间+v组内,如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。

因素A位于列的位置,共有r个水平,表示第j种水平的样本平均数;

因素B位于行的位置,共有k个水平,表示第I种水平的样本平均数。

x为样本总平均数

样本容量为 n= r x k。

每一个观察值xij是由因素A的r个水平和因素B的k个水平所组成的总体中抽取的样本容量为1的独立随机样本。

在进行双因素方差分析时,假定在个总体中,每一个总体都服从正态分布,而且有相同的方差。

在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。例如饮料销售,除了关心饮料品牌之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因。采用不同的销售策略,使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位;在市场占有率低的地区,进一步扩大宣传,让更多的消费者了解、接受该产品。若把饮料的品牌看作影响销售量的因素A,饮料的销售地区则是影响因素B。对因素A和因素B同时进行分析,就属于双因素方差分析的内容,双因素方差分析是对影响因素进行检验,究竟是一个因素在起作用,还是两个因素都起作用,或是两个因素的影响都不显著[2]。

双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方差的一致性。

双因素方差分析的方法多种多样,比如EXCEL,matlab,spss等等;具体实现以及实现后的表达的意思还需要大家共同来完成。